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Statement of Purpose

My goal is to introduce you to a spectrum of approaches used to model

the transition region, make you aware of the challenges in such a task, and

provide some tools to help you make decisions as to the most appropriate

way to address your individual problems.

Opinions of the Experts

We will initiate the learning process with a quick look at how various experts

of transition and turbulence modeling responded to my requests for their

personal ideas about the future of transition-region modeling. I have edited

their responses (as indicated by the [...]'s ) only to the extent necessary

to preserve anonymity and clarify acronyms. I hope that these notes will

provide you with the knowledge to intelligently evaluate these opinions and

to confidently reach your own conclusions.

"For the next couple of years I see that k - e models [...] will be used

for practical calculations. Perhaps slowly Reynolds stress models will take

over, but very little has so far been done with these in the area of transition

modeling. I believe that the future belongs to large-eddy simulations, and

I expect that in 5 to 10 years' time transition calculations will be done by

such simulations also for practical purposes."

"For engineering prediction procedures in the gas-turbine industry (i.e.,

for flows with high free-stream turbulence intensity) I recommend to put

more efforts into second-moment closure (Reynolds stress modeling). For

aerodynamic applications (i.e., low free-stream turbulence intensities) I am

afraid one is left with even more empirical transition correlations."

"I would expect Reynolds stress approaches to be the simplest level that

can usefully tackle transition on aircraft in subsonic or hypersonic flows

(though current schemes are almost certainly inadequate for the latter task).

They will need some help in getting started - possibly some kind of library

built up from separate DNS [direct numerical simnlation] studies. On gas-

turbine blades, two-equation schemes may suffice, particularly if one makes

use of the available strain and vorticity invariants to render the scheme

more appropriately sensitive to curvature and irrotational deformations of

the mean velocity field."
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"Low-Re RST [Reynolds stress transport] modeling will be vital for real

predictions of transition - possibly linked to intermittency or other treat-

ments for TtL < 1% - at least at subsonic conditions in both external and

internal environments. Simpler models (i.e., k - e) with additional refine-

ments may be needed for unstructured Navier-Stokes solutions with adap-

tive meshes for complex geometries. '_%t simpler derivative models perhaps

based on .Johnson and King type nonequilibrium approaches and Grund-

mann et al. ideas may be the limit for real (hypersonic) aircraft computa-
tions."



Chapter 1

Introduction

The calculation of engineering flows undergoing laminar-turbulent transition

presents special problems. Mean-flow quantities obey neither tile fully lam-

inar nor the fully turbulent correlations. In addition, local maxima in skin

friction, wall temperature, and heat transfer often occur near the end of the

transition region. Traditionally, modeling this region has been important for

the design of turbine blades, where the transition region is long in relation to

the chord length of the blade, blore recently, the need for better transition-

region models has been recognized by designers of hypersonic vehicles where

the high Mach number, the low Reynolds number, and the low-disturbance

flight environment emphasize the importance of the transition region. Need-

less to say, a model that might work well for the transitional flows typically

found in gas turbines will not necessarily work well for the external surface

of a hypersonic vehicle. In Chapter 2, some of the important flow features

that control the transition region will be discussed. In Chapter 3, differ-

ent approaches to the modeling problem will be summarized and cataloged.

Fully turbulent flow models will be discussed in detail in Chapter 4; models

specifically designed for transitional flow, in Chapter ,5; and the evaluation

of models, in Chapter 6. Finally, in Chapter 7, the major points will be sun>

marized and then 1 will take the opportunity to express my own opinions.



Nomenclature

A

A.

A +

a

aij

(11

B1, B2

C:

Cijk

Cl

Cp

Cs

Ce_ Col _ C_2

Ce_ Cel _ C¢2

C u

C1

C2

length scale used in near-wall exponential damping

constant for damping turbulent transport length scale

normalized length scale used in near-wall exponential damping

=- -u'v'/ (2k ), structure coefficient

= (u_u_ -2/35ijk)/k, anisotropic part of Reynolds stress tensor

coefficient used in setting initial dissipation-rate profile

empirical parameters

dU 1 2
= #-_ulw/(-_pU ), skin-friction coefficient

turbulent-stress diffusion correlation

length-scale coeflqcient

specific heat, at constant pressure

diffusion coefficient for turbulent stress

parameters used in modeling of dissipation

parameters used in modeling of dissipation

coefficient in eddy viscosity

coefficient in production term in dissipation-rate equation

coefficient in destruction term in dissipation-rate equation



CI _ C2_ C_ C 2

D

E

F

f.

fl

f2

gi

G

h

k

kth

L

Lt2

parameters used in modeling of Hi.i

material derivative

turbulent diffusion of

empirical source term used in the equation for ¢

fudge factor used to make a tensor contract correctly

low Reynolds number damping function

low Reynolds number damping function of dissipation

low Reynolds number damping function in eddy viscosity

low Reynolds number function in production term in dissipation-rate

equation

low Reynolds number function in destruction term in dissipation-rate

equation

body force

filter function for large-eddy simulation

specific enthalpy

1 I^t

-- 7uiui, turbulent kinetic energy per unit mass

thermal conductivity

length of transition region

= dU_o2d.:_._llt', pressure-gradient parameter at x,_
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_-_ij

I.

lo, ll, 12

31

'?_ ij

N

No

N2

7_j

Pk

P

p,

p+

smallest resolved stresses in large-eddy simulation

turbulent dissipation length scale

turbulent transport length scale

length scales for zero-equation, one-equation,

and two-equation models

Mach number

subgrid-scale model for anisotropic part of Ti.i

subgrid-scale model for anisotropic part of rlj

exponent in e_ transition-prediction method

nominal nondimensional spot-formation rate

adjusted nondimensional spot-formation rate

wall-normal component of unit vector in j direction

production of turbulent kinetic energy

stress production rate tensor

production of turbulent dissipation

pressure

fluctuating pressure

fluctuating total pressure

= - tie Ue d_ / t P_ua,), nondimensional pressure gradient
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q

gt

R_

Rk., R_,, Rz

Ry

Re

ReL

]_@TO

R@xs

Rco

ReO_

Re1

7"

S

5ij

_q't

T

1 _lr2
= _pc,,' , dynamic pressure

heat flux

=/c2/(eu), turbulent Reynolds number

constants in low Reynolds number version of/." -.0 model

= ykll2/u, turbulent Reynolds number based on y

Reynolds number based on streamwise distance

Reynolds number based on length scale L

Reynolds number at end of transition

Reynolds number at start of transition

Reynolds number based on x location of the start of transition

Reynolds number based on momentum thickness

Reynolds number based on momentum thickness at the start of transition

unit Reynolds number

= (T_, - T_)/(TT - T_), recovery factor

= 1( a_' + strain rate
2 cOxj cOx, ,I

= gl/[pc;(T_ - 7_)], Stanton number

temperature
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Tr

Ti:-

Tu

t

U

Ui

U T

!

'Ui

V t

X

xTo

Xi

Xto

y

y+

O/

total temperature

subgrid-scale stress on test filter

= _/Ue x 100, turbulence intensity (in percent)

time

mean streamwise velocity

velocity in the ith direction

dU
= ¢/_2-_y[_/P, friction velocity

velocity fluctuation in the streamwise direction

velocity fluctuation in the ith direction

velocity fluctuation in the wall-normal direction

coordinate vector

streamwise position at end of transition

coordinate in the ith direction

streamwise position at start of transition

= x2, wall-normal coordinate

= yur/u, wall-normal coordinate normalized by viscous scales

angle of pitch

functions used in k -w model
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;3,/3"

"7

A

_ij

o

X

Ao

#

¢teff

#t

11

angle of yaw

functions used in k- a3 model

turbulent intermittency

transition function

filter width associated with subgrid-scale models

= 1 if i = j, 0 otherwise

displacement thickness

turbulent energy-dissipation rate

modified dissipation rate

dissipation-rate tensor

momentum thickness

yon Karman constant (_ 0.41)

distance between points where 3' = 0.25 and 2 = 0.75

- d_--_5-O2/upressure-gradient parameter-- dx I

dynamic-viscosity coefficient

effective dynamic-viscosity coefficient

turbulent dynamic-viscosity coefficient

= p/p, kinematic-viscosity coefficient
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lit = #t/P, turbulent kinematic-viscositycoefficient

Y[ij pressure-strain correlation tensor

I]ijl, [Iij2, II w. w01' Iii32 parts of the modeled pressure-strain correlation

P

_r k

0"_

_j

o2

()'

(),,

density

Prandtl number for diffusion of k

Prandtl number for diffusion of e

Prandtl number for diffusion of co

= 1/co, turbulent time scale

-_- ttitt j -- ttiftj, subgrid-scale stress

correlating parameter for ONERA/CERT transition model

viscous-dissipation function

turbulent destruction of dissipation in e equation

= e/(3*k), a turbulence quantity proportional to the dissipation rate

per unit kinetic energy

deviation from Reynolds average

deviation from mass-weighted average

mass-averaged quantity or LES test-filtered quantity

Reynolds-averaged quantity or LES grid-filtered quantity
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Subscripts:

(2'133

D

i, j, k, l, ,m

lam

max

sgs

T

t

tO

t2

to

(x)

Acronyms:

ERCOFTAC

DNS

LES

adiabatic wall quantity

a damped quantity, usually because of wall proximity

boundary-layer edge quantity

tensor indices (summation over repeated indices is implied)

a laminar-flow quantity

maximum

subgrid-scale quantity

total

turbulent

value at start of turbulent boundary layer

value at point of "subtransition"

wall quantity

free-stream quantity (uI)stream of shock if applicable)

Europeon Research Community on Flow Turbulence and Combustion

direct numerical simulation

large-eddy simulation
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RANS

RST

RNG

SGS

SIG

TS

Reynolds-averaged Navier-Stokes

Reynolds stress transport

renormalization group

subgrid scale

special interest group

Tollmien-Schlichting
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Chapter 2

The Domain of

Dependence-Flow Features

That Affect Transition

The location and length of the transition region is sensitive to a number

of different flow features. Although the following summary is by no means

complete, it describes the sort of phenomena that may require consideration

in modeling the transition region.

2.1 Pressure Gradients

Adverse and favorable pressure gradients affect both the onset of transition

and the length of the transition region. Large, favorable pressure gradients

may even relaminarize an already turbulent flow [1]. Favorable pressure gra-

dients in a laminar flow lead to a delayed onset of transition and a more

extensive transition region (see [2]). The results of linear stability theory can

explain the delayed onset; Narasimha, Subramanian, and Badri Narayanan

[3] suggest that these results can also explain the greater extent of the tran-

sition zone, Transition in attached boundary layers with adverse pressure

gradients starts earlier, extends for a shorter distance, and is more two di-

mensional than transition in zero-pressure-gradient flows [4]. The formation

of a laminar separation bubble in the flow raises the possibility of a free-shear

layer instability that leads to transition.
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2.2 Compressibility

Compressibility effects are important in several ways. The Mach number

influences the mean flow of a boundary layer and the nature of the stabil-

ity equations. At Mach numbers greater than approximately 2, an inviscid

instability can have a significant effect during transition. This instability

has its critical layer far from the wall; hence, the typical sequence of events

observed for incompressible flows may not occur. In addition, as the fluctua-

tion Mach number increases above 0.3, the resulting turbulence [5] becomes

significantly different from that of the subsonic case.

2.3 Free-Stream Disturbances

Free-stream turbulence (vorticity), entropy (temperature), and acoustic (pres-

sure) disturbances are present in all flows to varying extents. In subsonic

wind tunnels with turbulence generating grids, most of the disturbance is

vortical (i.e., turbulent) in nature. In quiet subsonic (Tu < 0.1%) and in

transonic and supersonic wind tunnels, most of the fi'ee-stream disturbances

are acoustic [6]. Tile type of free-stream disturbances in practical applica-

tions is likely to be quite dependent on the particular application. Bushnell

[7] notes that subsonic powered aircraft are highly susceptible to acoustic

disturbances radiated from the engine and airframe, while particulates can

be a source of vortical disturbances at altitudes up to 24 kin. The turbine

blades in a gas-turbine engine probably experience free-stream disturbances

of all three types.

2.4 Surface Roughness

All surfaces have some degree of roughness. Joints and fasteners act as

large, discrete roughness elements, while multiple scratches, insect debris,

and material inhomogeneities all contribute to distributed roughness. The

effects of the surface imperfections can vary dramatically [8] depending upon

the characteristics of the roughness and the boundary layer at the location

of the roughness. Large roughness elements can be a source of turbulence via

a bypass mechanism. The bypass can occur right at the roughness element
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or further downstream.The roughnesscan alsoact to enhancethe primary
instabilities or asa sourceof receptivity for thesedisturbances.

2.5 Streamline Curvature

The Ggrtler instability that develops in regions of concave wall curvature

is fundamentally different from the usual viscous instabilities that initiate

transition on flat plates [9]. Instead of streamwise traveling waves, the GSrtler

instability manifests itself as pairs of counterrotating vortices. These vortices

distort the time-averaged, streamwise-velocity profile long before the flow can

be considered turbulent, hnportant differences in the physics of the transition

process are possible in this case.

2.6 Three-Dimensional Mean Flows

Three-dimensional boundary layers are subject to inviscid crossflow instabil-

ities that result in both stationary and traveling vortices in the flow. These

instabilities are generally important near the leading edges of swept wings

and on bodies of revolution at angles of attack [10]. As with the GSrtler vor-

tices, the stationary vortices that are excited by the crossflow instability can

lead to significant distortion of the time-averaged flow quantities upstream

of where the flow would be considered turbulent.

2.7 Unsteady Mean Flows

Flows on compressor and turbine blades are subject to the periodic impinge-

ment of turbulent wakes shed fl'om the upstream blade row. This impinge-

ment causes a turbulent "strip" to form across the span of the blade [1]. This

strip of turbulence propagates downstream along the blade at a velocity less

than that of the wake. Regions of wake-induced transition typically are sepa-

rated by a region in which a nominally steady, normal transition takes place.

Hence, multiple modes of transition can be present simultaneously on the
same surface.
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2.8 Surface Heating and Cooling

Tile effects of surface heating and cooling on laminar-turbulent transition

are varied. For subsonic flows, the effects of heating and cooling are a con-

sequence of the temperature dependence of viscosity and of the effect of

viscosity on the mean flow profile [11]. Uniform heating in water boundary

layers tends to stabilize the flow by decreasing the viscosity near the wall;

in air, uniform heating tends to destabilize the flow. However, Masad and

Nayfeh [12] show that a heating strip placed somewhat upstream of Branch I

of the neutral stability curve can actually help stabilize an air boundary layer,

presumably because the boundary layer that is downstream of the heating

strip "sees" a relatively cooler wall.

The heating and cooling phenomena are further complicated for super-

sonic flow. In supersonic flow, cold walls (the typical situation for a reentry

vehicle) generally stabilize the first instability mode (the mode that contin-

ues analytically from the most unstable subsonic mode). However, at Mach

numbers somewhat greater than 2, cold walls destabilize the higher modes

(Mack modes [13]). Preliminary results (Masad, personal communication)

indicate that the heating strips that are upstream of the Branch I neutral

curves produce trends that are similar to those obtained with global cooling
for the respective modes.

For gas-turbine applications, the wall heating and cooling issue is prob-

ably of secondary importance. Experiments with high levels of free-stream

turbulence (Tu > 1.6%) in a subsonic flow indicate that wall cooling affects

neither the location nor the length of transition [14].

2.9 Mass Injection or Suction

Mass injection is common on turbine blades, providing a protective blanket of

relatively cool air around the blade. Fluid is typically injected near the nose

of the blade, where strong, favorable pressure gradients are present. Mayle

[1] reports that under these conditions, neither a laminar boundary layer

nor a truly turbulent boundary layer exists, except perhaps much further

downstream. In the presence of strong, favorable pressure gradients, the

locally excited turbulent regions near the injection slots can relaminarize

and undergo a normal transition further downstream.
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The reverseprocessof wall suctionisbeingusedto helpstabilizeboundary
layersin quiet flowsand hencedelaytheonsetof transition [15]. Optimization
often involvesthe useof wall suction near Branch I of the neutral stability

curve [12, 16, 17]. Suction typically is not applied in the transition region,

so information is available only on the the onset of transition.

2.10 Separated Flows

Separated flows occur in adverse pressure gradients where the momentum of

the fluid in the boundary layer is insufficient to overcome the pressure gra-

dient. Boundary-layer separation is more common for laminar flows (which

do not easily transport momentum across the boundary layer) than for tur-

bulent flows (which do transport large amounts of momentum across the

boundary layer). Typically, a region of laminar separated flow will undergo

transition as a free-shear layer and then reattach as a turbulent flow. The

length of the separation region can be either short or long; the short bubbles

have only a local effect on flow, while the long bubbles interact extensively

with the exterior flow and significantly modify the pressure distribution on

the surface. Short bubbles may burst into long bubbles and possibly result

in stall [I]. The limited data indicate that the transition lengths of both the

long and short bubbles are essentially the same, with the difference in the

bubble length mainly due to the length of the unstable laminar shear layer

[1]. Some experts have theorized that the long bubbles undergo a primary

instability while the short bubbles experience a bypass transition.
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Chapter 3

Model Classifications

3.1 General

Models for transitional flows can be categorized in a variety of ways (e.g., by

the numerical technique, by the type of turbulence model, or by the kind of

transitional flow modifications). Because the success or failure of any model

for the transitional flow regime is strongly coupled to the scheme used to

calculate the incipient turbulent flow, a classification matrix can help dis-

tinguish between aspects of the model that are related to the turbulent flow

calculation method and those aspects that are specific to the transition re-

gion. In table 3.1, approaches for calculating turbulent flows are listed in

the left column. For direct numerical simulation (DN$), all relevant scales

of motion are numerically resolved; the only modeling involved is that asso-

ciated with the derivation of the Navier-Stokes equations and the boundary

conditions used. In large-eddy simulation (LES), the large scales of motion

are computed and the small scales are modeled. Four types of transport-

equation models are listed, followed by integral methods. The higher order

turbulence models appear near the top of the matrix; the lower order models

are near the bottom. The other columns indicate the type of transition-

region model as classified by Dey and Narasimha [18]. An x in the column

indicates that a particular category of transition-region model is compatible

with the corresponding turbulence model.

In the remainder of this section, the general features of each class of

turbulence and transition-region model will be discussed. Later sections will
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Direct numerical simulation
Large-eddysimulation
Reynoldsstresstransport
Two-equationtransport
One-equationtransport
Zero-equationtransport
Integral methods

Linear combination Algebraic Differential

X

X

X

X

X

Table 3.1: Possible combinations of turbulence models (rows) with transition-

region models (columns).

include more detail.

3.2 Turbulence Models

3.2.1 Direct Numerical Simulation and Large-Eddy

Simulation

Both the DNS and LES approaches require enormous amounts of computing

resources, so these approaches are usually used on a supercomputer. The

DNS approach, which involves no explicit turbulence modeling, is entirely

a research tool that enables scientists to better understand various aspects

of the physics of turbulence and can be used to guide the development of

turbulence models. In LES, the small scales of turbulence, which are assumed

to be more universal in nature, are modeled; the large, energy-containing

scales that are more flow specific are explicitly calculated. The models used

for the small scales are called subgrid-scale (SGS) models. Unlike other

types of turbulence models discussed below, the resultant equations for LES

describe a fully time-dependent flow; the modeling only blurs the turbulent

structures so that the small scales do not need to be calculated. A potential

exists for the practical use of LES in the near future, although the high cost

will restrict its use to cases where lo_'er order models are not expected to

give satisfactory results.
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3.2.2 Statistical Turbulence Models

Presently, statistical turbulence models are the most widely used turbulence-

modeling schemes. Flow quantities are decomposed into mean and fluctu-

ating parts and then substituted into the equations of motion. These equa-

tions are averaged to produce a set of equations for the mean motion. Os-

borne Reynolds pioneered this approach [19] by temporally averaging the

equations for incompressible flow; the resultant equations are known as the

Reynolds-averaged Navier-Stokes (RANS) equations. These equations in-

volve the mean flow quantities as well as correlations of the fluctuating quan-

tities. The correlations appear in the equations of mean motion in the same

way as the viscous stress terms appear; hence, these correlations are known

as the Reynolds stresses. The various classes of models differ in how these

correlations are approximated.

Reynolds stress transport (RST) models involve transport equations for

each of the six independent Reynolds stress components. This class of models

is the most complex of the statistical turbulence models, and the use of

these models for engineering applications is not yet commonplace. However,

because the Reynolds stresses can independently respond to various flow

conditions, this class of models can potentially be applied to a large variety

of flows. This potential generality motivates nmch of the current research on

these models.

Eddy-viscosity models include a number of classes of models, all of which

approximate the effect of the turbulence on the mean motion by modifying

the coefficient of viscosity. The effective viscosity coefficient that is used in

the computation of the flow field is the sum of the molecular viscosity #

and the turbulent viscosity/at. The different classes of eddy-viscosity mod-

els are distinguished by the number of additional differential equations that

are solved to determine #t- Dimensional analysis suggests that #t is the

product of the density, a velocity scale, and a length scale. The local mean

density is almost always used, leaving the velocity and length scale still to

be determined. Two-equation models solve differential equations to deter-

mine these two scales. One-equation models solve a differential equation for

the velocity scale and use algebraic relations to determine the length scale.

Zero-equation models use algebraic relations to determine both the velocity

and length scales. More detail on all of these model classes will be given in

Chapter 4.
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3.2.3 Integral Methods

In integral methods, an ordinary differential equation is soh,ed for the mo-

mentum thickness 0 in terms of the skin-friction coefficient CI, the displace-

ment thickness f*, the boundary-layer edge velocity, and body curvature.

For flows with heat transfer, another equation is required that involves the

Stanton number S/, the enthalpy thickness, the free-stream and wall tem-

peratures, and the body geometry. Approximate relationships between the

variables are substituted into the equations. The equations are integrated

in the downstream direction. These methods are computationally quite effi-

cient, but are accurate only for those flows in which the assumed relationships

are appropriate. Of the 20 integral methods that competed in the 1968 Stan-

ford Conference [20, 21], only four received an evaluation of "good" after they

were tested for 16 different turbulent flows. In spite of their limited general-

ity, integral methods provide good skin-friction and heat-transfer predictions

for well-studied flows of engineering interest. See White [22] for more details.

3.3 Transition-Region Models

3.3.1 Linear-Combination Models

Linear-combination models are based on the assumption that the transi-

tional flow is composed of intermittent spots of turbulence in an otherwise

fully laminar flow. Under this assumption, the time-averaged flow field is a

linear combination of the laminar flow and a fully turbulent flow that origi-

nates where transition starts. The relative amounts of laminar and turbulent

flow in the linear combination are governed by the intermittency 7, which is
defined as the fraction of time that the flow is turbulent. The most difficult

aspect of this approach is the determination of an appropriate distribution for

the intermittency. An important feature of this type of model is that it can

be coupled with any method of calculating the laminar and turbulent flows.

The basic assumption of the model (i.e., the coexistence of fully laminar and

fully turbulent states) has been questioned by some investigators who claim

that the transition region, at least in some flows, is more complicated than

a simple mixture of laminar and turbulent flows.
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3.3.2 Algebraic Models

Algebraic models are designed to be incorporated into turbulence models

that use an eddy-viscosity assumption. They involve a modification of the

effective viscosity so that

#_fr = # + "�tiLt (3.1)

where 7t is a transition function equal to zero before the start of transition

and equal to 1 at the conclusion of transition. Different models use various

functions to represent "ft. Some models have 7t approximate the flow inter-

mittency 7 (see [23]); in other models [24] "_ is greater than 1 in parts of the

transition region and so cannot represent the true intermittency. The use

of algebraic models is convenient because these models involve very minor

modifications to existing eddy-viscosity models.

3.3.3 Differential Models

Differential models address the issue of transition in the fundamental differ-

ential equations. The transition phenomena are often addressed simultane-

ously with other low Reynolds number modifications used in many of tile

turbulence models that use transport equations.
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Chapter 4

Fully Turbulent Flow Models

In this chapter models for fully, turbulent flow will be discussed. The particu-

lar models have been chosen because either they clearly illustrate important

points about a group of models or they have been incorporated into a tran-

sitional flow model that is discussed in the next chapter.

Standard Cartesian tensorial notation is used; repeated indices imply a

summation. Tensor indices are restricted to the letters i, j, k, l, and m. All

other subscripts clarify variable meanings. Where specific variable directions

are needed, the subscript 1 indicates the streamwise direction; the subscript

2, the wall-normal direction; and the subscript 3, the spanwise direction.

4.1 Basic Equations

For a Newtonian fluid, when tile Stokes hypothesis is assumed,

Stokes equations can be written

subject to conservation of mass

and conservation of energy

Dh

P Dt - Dv O( OT)

the Navier-

(.1.1)

(4.2)

(4.3)
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where ui is the velocity; p is the pressure; gi is a body force;/_ is the coefficient

of viscosity; 5ij is the Kroneker-delta; h is the specific enthalpy; kth is the ther-

mal conductivity; and _ = (Oui/Oxj)# [Oui/Oxj + Ouj/Ox_ - 2/3 ( SijOul/Oxl)]

is the viscous dissipation function. For the remainder of this work, the body

force will be neglected, although it could be retained if it were important in

a particular application.

There are two common ways to decompose the flow variables, depending

upon whether the flow must be treated as compressible. For incompressible

flow, the standard Reynolds decomposition is

f . f + j" (4.4)

where f is the flow quantity, f is the average, and f' is the fluctuation.

The average can be either a temporal average or an ensemble average. With

Reynolds averaging, the average of a fluctuating quantity is zero; hence,

f'=O (4.5)

The other common way to decompose the flow field is through the use of

mass-weighted averages such that

f = f + f" (4.6)

where

Note that

but that

]_77 (4.r)

pf"=O (4.8)

f" -_ 0 (4.9)

To keep the presentation of the modeling concepts unencumbered by al-

gebraic messiness, unless specifically stated otherwise, the models will be

discussed in their incompressible, isenthalpic form. Hence, the Reynolds-

averaged equations can be written as

Ofik
-0 (4.10)

Oxk
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--+
Ot Ox j

ox, + i" \ oxj + ox,; - 'J-gV2  pu_ u_] (4.11 )

r _ Especially with an in-The Reynolds stress is easily identified as -puiu j.

compressible flow, mass-specific quantities are commonly used; hence, the

term "Reynolds stress tensor" is often used to refer to the velocity correla-

tion -u_u}. This convention is used in this report so that, for incompressible

flow, the turbulent kinetic energy is defined as

-- 2u_u_ (4.12)k

and the true dissipation rate of k is

v _ \Oxj + _xi ] (4.13)

The symbol c is often defined as

Ou_Ou_
( _ Y 0Xj 10Xj (4.14)

and the additional term associated with the dissipation rate v(Ou_/Oxj) (Ou_/Oxi)

is combined with viscous work terms in the kinetic energy equation to form

the kinetic energy diffusion term v (02k/OxiOxi), as is done here. Although

e is commonly called the turbulent dissipation, Hinze [25] points out that

this is the true dissipation only in homogeneous turbulence. For compress-

ible flows, the dissipation is considerably more complicated. The additional

complexity will not be addressed in this paper.

With the above background information, some simple turbulence models

will be examined.

4.2 Eddy-Viscosity Turbulence Models

In eddy-viscosity models, the Reynolds stress tensor is approximated as

- u_u} = 2 Sij - -_k ij (4.15)
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where

"= \ axj + oxi ] (4.16)

is the mean-flow strain rate and the last term on the right is needed for

consistency with the definition of k.

4.2.1 Algebraic or Zero-Equation Models

In zero-equation turbulence models, an algebraic relation is used to deter-

mine the eddy viscosity. A mixing-length hypothesis suggests that the eddy

viscosity take a form like:

#' (S )½ (4.17)ijS,j
P

where l0 is a length scale obtained from an algebraic formula. The length

scale represents the distance traveled by a hypothetical lump of fluid before

that lump transfers its momentum to another lump of fluid. This level of

modeling implies that the mean motion is unaffected by the turbulence in-

tensity k. Two common zero-equation models are the models of Cebeci and

Smith [26] and Baldwin and Comax [27]. The Cebeci-Smith model gener-

ally works well in subsonic, equilibrium turbulent boundary layers. Many

modifications to the model have extended the useful range of the model to a

large variety of flows. The Baldwin-Lomax model was specifically designed

to handle transonic and supersonic separated flows over airfoils. Both are

two-layer models. In the Baldwin-Lomax model, the mean vorticity magni-

tude is used instead of the mean strain rate, although for two-dimensional

boundary layers this substitution makes little difference. Major differences

between the models exist in their treatments of the outer layer. As an ex-

ample of a zero-equation model, consider the variation of the Cebeci-Smith

model described in [28]. In the inner layer,

10 = _:y [1 - exp(-A) ] (4.18)

where K is the yon Karman constant (_ 0.41), y is the vertical distance from

the surface, and A is a damping coefficient such that

A = '4+# _ (4.19)

pu_ (1 - ll.8p+) _
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The friction velocity is u,, and

p+_ i_U_ dUe
(p_u_) dx (4.20)

is a nondimensional pressure-gradient parameter. The subscript e denotes

a quantity evaluated at the boundary-layer edge. The mixing length 10 is

proportional to the distance from the wall. Close to the wall, the forces of

molecular viscosity and the impermeability of the wall significantly reduce the

turbulent shear stress and, through equations (4.15) and (4.17), the mixing

length. The near-wall damping of the length scale is an important feature

of many models; the complicated forms taken by some damping functions

indicate efforts by modelers to account for various effects. Here, in addition

to a van Driest damping, adjustments have been made to account for mean-

flow pressure gradients. In the outer region of the boundary layer/_t is given

by

ttt= 0.0168 p_/ --]o_(U_ - U)dy (4.21)

when the momentum-thickness Reynolds number Ree is greater than 5000.

The quantity _ is an edge intermittency factor that smoothly reduces the

eddy viscosity to zero outside the boundary layer. An Reo-dependent cor-

rection to the value of 0.0168 is applied when Reo < 5000. The switch from

inner to outer expression for eddy viscosity occurs at the smallest value of y

at which the two expressions are equal. A typical distribution for the eddy

viscosity, normalized by the molecular viscosity, is illustrated in figure 1.

Note the discontinuous slope where the inner and outer models match.

4.2.2 One-Equation Models

In a one-equation model, a transport equation is solved for the turbulent

kinetic energy. The velocity scale in the eddy viscosity is the square root of

the turbulent kinetic energy, so

1

ttt= fivt = c_,_k_ ll (4.22)

where la comes from an algebraic formula. For incompressible flow, the exact

transport equation for k is

Ok Ok 0_
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0 [1 , , , piu_) 02k (4.23)

Unfortunately, some terms on the right side of equation (4.23) are not known

and must be modeled. The turbulent transport is modeled by a gradient-

diffusion hypothesis such that

.,.: (,,) (4.24)

The dissipation term is also modeled, typically in a form

C"k}
_ (4.25)

ll

Two distinct one-equation approaches are particularly relevant to transi-

tional flows.

The Norris and Reynolds Approach

The Norris and Reynolds [29] model was developed in the early 1970's and

then largely left unused until Rodi and his co-workers [30] at the University of

Karlsruhe began using the model as part of a two-layer model. More details of

the two-layer model will be discussed in the context of two-equation models.

The version of the Norris and Reynolds model that is used by the Karl-

sruhe group [30] is derived from the basic definitions for eddy viscosity (equ.

(4.22)) and turbulent kinetic energy (equ. (4.23)) with the gradient-diffusion

approximation for the pressure-velocity and triple-velocity correlations (equ.

(4.24)). For consistency with the log layer, the constant c, in equation (4.22)

is the square of twice the structure parameter 2a = -u'v'/k. For turbulent

boundary layers in local equilibrium, experiments suggest that 2a = 0.3;

hence, c, = 0.09. The constant ak in equation (4.24) is 1.0. The length scale

11 varies linearly in the log-law region of the boundary layer (i.e., 11 = ely).

As in the Cebeci-Smith model, a near-wall (or perhaps more accurately, a low

Reynolds number) damping is applied to the length scale. Different damping

functions are used for/h and e, so that

1

fit = put = c, pkSl, (4.26)
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is tile eddy viscosityand

is the dissipation, where

(4.27)

[ ( R 25)]I,=11 1-exp _,A-_
(4.28)

and 11

are the damped length scales. The wall-normal Reynolds number

(4.29)

1

k_y
R u - (4.30)

/2

often appears in low Reynolds number damping functions. For conformity

with the log-law layer, ct = t_c_ 3/4 where g is the yon Karman constant.

The Karlsruhe group chooses A, = 50.5 and A + = 25. Rodi [31] points out

that tile l_ distribution is not in agreement with the DNS data very near the

wall; however, this disagreement is unlikely to cause difficulties in computing

quantities of engineering interest. Unlike many more complicated models,

this model performs well under adverse pressure gradients [32].

The McDonald and Fish Route

In the early 1970's, McDonald and Fish [33] modified the one-equation model

of McDonald and Camarata [34]. In both works the turbulent kinetic energy

was integrated across the boundary layer; this integration eliminated the need

to model the pressure-velocity and triple-velocity correlations and simplified

the solution procedure. Algebraic models were developed for the remaining

correlations. The structure parameter a was tuned for transitional flow. The

model simulated the transition process in a variety of cases; the best compar-

isons to specific experiments occurred when the values used by the authors

for free-stream turbulence and wall roughness differed from those values given

by the experimenters. Shamroth and McDonald [35] made some adjustments

to adapt the model for use in hypersonic boundary layers. Sometimes the

agreement with experimental data was good and sometimes not. The modern
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importanceof this model is largely'due to the recentresurrectionsof various
aspectsof the methodology.

Mavrantonakis and Grundmann [36] usemany of the sameclosureas-
sumptionsasMcDonald and Fish [331;however, the differential (rather than

integrated) form of the k equation is employed. The typical gradient-diffusion

model (equation (4.24) with _rk = 1) is used for the pressure-velocity and

triple-velocity correlations. When the definition of tile structure coefficient

is used, the eddy viscosity is

m = (4.31)

where the subscript D indicates streamwise damping. This use is consistent

with equation (4.22) if ll = l.ct/_ and cl and c. are defined the same way as

they were defined in the Norris and Reynolds approach.

The mixing-length variation across the boundary layer is adapted from

McDonald and Camarata [34] as

5- 5 1

where the last expression in the brackets damps the length scale in the sub-

layer. Here 9 + = 9u_/v where u_ is the friction velocity and

26(1,) (4.33)
AD- 0.085(5

The streamwise evolution of the length scale at the boundary-layer edge is

taken from Deyhle and Orundmann [37] as

(l,)_ f6o 2aDk dy

__2__(5 (5f0_ °u_ tanh [_(,.1_]57
(4.34)

This expression must be solved iteratively.

Unlike other models that will be considered, e in this case represents the

true dissipation rate of k, which for incompressible flow can be written as

_ _ Ititt ke = v \Oxk Oxk + Oxk Oxi = VOxk Oxk + vOTzkOxi (4.35)
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In other models, the secondterm is combinedwith visco'_swork terms to
form vO2k/Oa'iOa'i. For this particular model (and for other models in which

e is defined this way), tile turbulent kinetic energy equation must be written

Ok Ok Oczi
+ =0-7 o.rjo',_ i

( ':_ll t t ",
0 /1 , , , 0 0t,. c, iuj] (4.36)V, +"0.-703"i -

The underlined term in equation (4.36) must also be modeled. Deyhle and

Grundmann [37] account for this extra term, although the term is omitted

in the more recent work of Mavrantonakis and Grundmann [36]. In either

case, tile two terms that make up e are modeled separately as

3

OU{- Oqtt_ (2aDk) _
1/ -- c4fe (4.37)

and

where

2utu' (1,,) 2 OUl
i' k __ ('2aD[¢)--,_j (4.38)

u OxkOxi _D Oxj

f_ = 1 -- exp (--0.01189Ry) (4.39)

is a low Reynolds number damping of the dissipation, nj is the wall-normal

unit vector, and ld) is the streamwise damped dissipation length scale. The

nondimensional dissipation length scale is the same as that used by McDonald

and Camarata [34], such that

= O.ltanh _ {4.40)

the term u [0' (---_)u:u_,/O,rkOxi] in the dissipation should be mod-Intuitively,
J

eled the same way as the underlined term in equation (4.36); however, Deyhle

and Grundmann [37] model the two terms differently. Interestingly, Maw'an-

tonakis and Grundmann [36] have traced some discrepancies in their skin-

friction predictions to the dissipation rate, although they have not associated

the problem with the inconsistency in their turbulent kinetic energy equation.
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The transition processis largelyaccountedfor by tile streamwisedamping
functions. The dampedstructure constant is

(4.41)

and the damped dissipation length is

(4.42)

where Cl and c2 depend on the free-stream turbulence level.

The model has been tested for flat plate and adverse-pressure-gradient

boundary layers with Tu -_ 1.2% with a high degree of success; however, the

results were not as encouraging for a three-dimensional boundary-layer case.

A one-equation model is an efficient design tool, but this particular model

needs further development with a more solid foundation for the dissipation

rate.

4.2.3 Two-Equation Models

In two-equation models, transport equations are solved for both the velocity

and length scales used to form the eddy viscosity. As in the one-equation

model, the turbulent kinetic energy is used almost universally to obtain the

velocity scale. A number of different approaches exist to determine the length

scale. The most popular approach is to develop a transport equation for

the dissipation e, because e appears explicitly in the k equation anyway.
Various forms of the k - e model will be discussed below. An alternative

approach involves a transport equation for the turbulent time scale r so

that the turbulent length scale is proportional to kl/2r. Speziale, Abid, and

Anderson [38] have recently developed such a model; however, the model has

been tested on only a small group of flows. Yet another choice is to develop

a transport equation for co, which is proportional to the dissipation rate per

unit kinetic energy. Efforts to develop k-e and k-co models that are suitable

for transition are underway; this section will focus on some details of these

models for fully turbulent flow.
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k - c Models

In this approach

l_ = f.-- (4.43)

and the eddy viscosity can be written as

1 k 2
ttt= put = fic, k_l_ = tic, f.-- (4.44)

e

the function f, has been included in anticipation of the need for a low

Reynolds number damping function, as in the one-equation model. The

exact equation for e for incompressible flow is

0e 0e

0--t + _i=-- = uV 2e + T', + D, - _, (4.45)
0£i

where tile production of dissipation is

P. =--2. 04 as, e.
Oxj Oxj Oxk Ox; Oxx. Oxk

- 2u u k- 2u (4.46)
O.r_ Ox_.Oxj Oxk Ox,, Ox._

tile turbulent diffusion of dissipation is

= u k -- - (4.47)

and the turbulent destruction of dissipation is

O2u} O2u_ (4.48)
_ --=2t/20xkOxm OcckOxm

The last three terms of the e equation need to be modeled. In the k

equation, the turbulent diffusion of kinetic energy is approximated by a

gradient-diffusion model. The same can be done for the turbulent diffusion

of dissipation, such that D_ is approximated as

0 (,t 0_) (4.49)7?_- Ox, a_ Oxi
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where_r_is a constant,
The production of dissipation is modeledas

'_L-')e ---- --glfl I ill J) O,l_j
(14.50)

where cl is a constant, and fl is a damping function. To obtain this form,

the production of dissipation was assumed to be proportional to the pro-

duction of turbulent kinetic energy. Recently, Speziale [39] showed that the

same expression for T'_ can be obtained by the less stringent assumption that

the production of dissipation is governed by the level of anisotropy in the

Reynolds stress tensor and the mean-velocity gradients. The leading order

term in a Taylor-series expansion for small turbulent anisotropies and short

turbulent time scales leads to equation (4.50).

Dimensional analysis suggests that tile destruction of dissipation should

be modeled as
_2

O_ = c2f2"-_. (4.51)

where c2 is a constant, and f2 is another damping function. Without any

damping functions, this expression is singular at a solid surface because k

(but not e) goes to zero.

The value of the dissipation at a solid surface is

[(Ou')2 + (Ow')_] = 2u ('Ov/_ 2 (4.52)
-- ,, t au J.=o

which is difficult to handle numerically because the boundary condition de-

pends on the solution to the /_"equation. Several investigators get around

this numerical difficulty by splitting the dissipation (i.e. e = _ + D where i

satisfies a homogeneous condition at the wall and D is a function that equals

the wall value of the dissipation and goes to zero away from the wall). Ad-

ditionally, an empirical source term E is sometimes added to the dissipation

equation to increase the dissipation in certain areas of the flow.

When all of the pieces are put together, the standard incompressible k - e

model equations are
Ok Ok

0-7+ =Oxi
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.[<
O_ O_

0---/+ _* Ox_ -

with:

_ , , = -i_6ij_{uj vt \O.rj + Oxi] '

and

(4.5:3)

+ E (4.5,4)

(4.55)

_2

v, = c.L-= (4.56)
d

In a comprehensive overview of the early k-e models, Launder and Spald-

ing [40] presented what have become fairly standard values for the various

constants: c, = 0.09, cl = 1.44, c_ = 1.92, crk = 1.0, and cr_ = 1.3. The

constant c,, was determined by the requirement for a constant stress region;

ci, by the value of the yon Karman constant; c2, by comparison to experi-

mental results of the decay of grid turbulence; and crk and c_, by computer

optimization. Launder and Spalding [40] avoid low Reynolds number, near-

wall problems by not actually integrating the equations to the wall. Rather,

Launder and Spalding assume a functional form of the solution in the near-

wall region and match that with the solution at some point sufficiently far

from the wall where the near-wall effects are negligible.

Jones and Launder [41] addressed the low Reynolds number and near-wall

difficulties by using damping functions to multiply the standard values of c,

(which multiplies the eddy viscosity) and c_ (which multiplies the singular

term in the e equation). Jones and Launder chose

2.5f.--exp (1 + _:-o) (4.57)

and

:2: (-R+)] (4.5s)
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where the turbulent Reynolds number is R.r = k2/(_u). They split the

dissipation e = _ + D and used

D = 2. ] (4.s9)

as well as a source term

E = 2uut OxjOxj \OzLOzl]

In the computed transition problem, transition occurred too abruptly at a

Reynolds number that was too low. A minor variation of the Jones and

Launder model was developed by Launder and Sharma [42], in which the

damping function fu was changed to

fu = exp (1 2

This change improved the performance of the model dramatically.

Lain and Bremhorst [43] developed a different set of wall functions to deal

with low Reynolds number effects in the k - e model. Their expression,

20.5'_ (4.62)= [1- exp (-0.0165Ru)] 2 (1 +L
RT /

was found by Patel, Rodi, and Scheuerer [44] to be a good approximation in

the viscous region; however, the choice of f2 = 1 - exp(-R_.) did not lead to

the proper exponent for the final stages of decay of isotropic turbulence. The

function ]'1 = 1 + (O.05/fu) 3 increased the dissipation and hence decreased

the peak value of k in the near-wall region. The wall-boundary condition

on the dissipation was taken from the k equation at the boundary (i.e.,

elu=o = u(O_k/Oy 2) ly=o). Patel, Rodi, and Scheuerer [44] found that

= 0 (4.63)
"_ y.=O

yielded almost identical results to those obtained with the use of the more

complicated boundary conditions. Rodi and Scheuerer [17, 45] used this sim-

plified boundary condition in their transitional flow calculations and obtained
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reasonably good agreement with experimental measurements. However, like

Jones and Launder [41], they found that the transition region was often too

short.

In their two-layer model, Rodi and his coworkers [30, 31, 46, 47, 48] only

use the k - e model away from the wall region to avoid some of the near-wall

problems associated with the k - e model. Near the wall, the one-equation

model of Norris and Reynolds [29] is used. This approach reduces the need

for high resolution very near the wall, but is more empirical because the

length-scale distribution must be prescribed algebraically. In addition, the
two models must be matched at some distance from the wall. More details

of this model will be described later when transitional flow modifications are

discussed.

k - w Models

As seen above, the e equation has two important difficulties: the lack of

natural boundary conditions for e at the wall and the singularity of the e2/k

term at the wall. Opportunities to resolve these problems are possible when

the equation is recast in a different form.

Wilcox [49] reviews the history of k-_o models from 1942 until 1991. For

the model that is discussed here, Wilcox [50] specifically assigns

£

_o - (4.64)
(/3-k)

where/3* is a proportionality coefficient. The modeled forms of the k equation

and ,; equation are then written

Ok Ok

O--i+ =Oxi

and

Ofti fl*kw + OxjOxj- u_u'j Ox--_j- _xi -_k _ + u-- (4.65)

Ot + 'g2i OX i OXjOXj

E /3_o2 (4.66)
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with

ut - (4.67)

The coefficients O'k and a_, are both set equal to 2. In the high Reynolds

number version of the model, o_ = 5/9, a* = 1, /3* = 9/100, and /3 = 3/40.

According to Wilcox [49], even though the asymptotic behavior as y --+ 0 is

not correct (u'v' _ y4 rather than u'v' _ y3), this model predicts the mean-

flow profiles for adverse-pressure-gradient flows better than /c - e models.

Wilcox [49] believes that the proper behavior in the defect layer is more

important than in the sublayer. Additional modifications for transitional
flow will be discussed later.

Summary of Two-Equation Turbulence Models

A limited sample of the rich variety of two-equation turbulence models is

offered above. Much of the diversity in these models is generated by the

low Reynolds number forms of k - e models. To sort through tile nuinerous

possibilities, Patel, Rodi, and Scheuerer [44] evaluated eight different two-

equation low Reynolds number turbulence models. The desired mathematical

properties of the models, as well as ttleir actual performance on four carefully

chosen test cases, were discussed.

The low Reynolds number functions J'_, fl, f2, D, and E are incorpo-

rated into the modeled equations for different reasons. Tile reduction in the

shear stress by the function f, as the wall is approached is tile result of two

independent phenomena: tile direct action of molecular viscosity and the

near-wall influence on the fluctuating pressure. The second phenomenon is

actually independent of viscosity and should not. be correlated with RT, Ry,

or y+. However, because the separation of the two effects in the resulting

shear stress is difficult, the effects are usually modeled together. Experi-

mental evidence suggests that ,fu should asymptote to unity by y+ = 60,

although all models tested asymptoted beyond this point. The functions

fl and f2 control, respectively, the near-wall changes in the production and

destruction of e. The presence of fl increases e in the vicinity of the wall.

The additional function E is used for a similar purpose. The presence of f2

is occasionally required to stabilize the numerical solution of the e equation

as k --+ 0, in which case f2 oc y2 near the wall. The use of an alternative

dissipation function _ = e - D, where D ¢ 0 (as in the Jones and Launder
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model), somethneseliminates this difficulty (typically at the cost of intro-
ducing an accuracy problem right near the wall, becauseg usually varies

much more rapidly than _ in the wall region). The function f_ is based on

an experimentally observed change in the decay law of isotropic turbulence

from k o_ x -1'25 to k (x x -2'_ as the turbulence intensity RT decreases. The

effect of f_ should be restricted to low RT (typically RT < 15).

The computations performed by Patel, Rodi, and Scheuerer [44] revealed

that some models did not produce results consistent with experiments even

for tile zero-pressure-gradient test case. An analysis of the near-wall behavior

of several turbulence quantities suggested that the constants and damping

functions used in those' models (Hassid-Poreh [51], Hoffman [52], Dutoya-

Michard [53], and Reynolds [54]) restricted their generality, The models of

Launder and Sharma [421, Chien [55], Lain and Bremhorst [43], and Wilcox

and Rubesin [56] performed much better, although even these needed im-

provement. Patel, Rodi, and Scheuerer suggested that

1. The damping function f, be chosen to agree with available experimen-

tal data and its effects restricted to the sublayer and buffer zones.

2. The functions fl and f2 in tile dissipation-rate equation should be

mathematically consistent with the required near-wall behavior.

3. All functions and constants should be fine-tuned to reproduce the basic

features of wall-bounded shear flows in a variety of pressure gradients.

Finally, Patel, Rodi, and Scheuerer [,t4] note that modifications to the

high Reynolds number versions of most models will be required to handle

adverse-pressure-gradient flows.

4.3 Reynolds Stress Transport Turbulence

Models

Most two-equation models have trouble with stagnation flows because the

turbulent energy production is dominated by the normal, rather than the

shear stresses, and the normal stresses are typically not calculated properly

with an isotropic eddy-viscosity model. In addition, two-equation models

do not consider the effects of curvature and rotation (and body forces in
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general) on tile turbulence structure, which createstile need for a higher
level of modeling.

The Reynoldsstresstransport (RST) modelsarealsoknownasReynolds
stressclosures,second-orderclosures,and second-momentclosures.The term
Reynoldsstresstransport will beusedhere. Thesemodelsdonot assumean
eddy viscosity,but rather usetransport equationsfor all of the terms of the
Reynoldsstresstensor. For incompressibleflows

O (UiUj) 0

+ _k
Ot Ozk

OCijk

= Pij + I]ij -eij Oxk + v

where the production of turbulent stress is

0aj= / "_
Pij -- _uluk)

OXk

the pressure-strain correlation is

OXkOXk
(4.68)

(4.69)
Oxk

II,j = 7 \ oxj + ox, ]

the dissipation-rate correlation is

(4.70)

and the turbulent-stress-diffusion correlation is

(4.71)

_ll _l I ?,.it l, t
Cijk _'_ i j k -_- P Ui(_jk "_- P'Ulj6ik (4,72)

As an example of an RST closure, the model presented by Savill [57] will

be considered. The model contains many features of the model developed

by Kebede, Launder, and Younis [58]. As is often done, a gradient-diffusion

hypothesis is used to model the turbulent diffusion of turbulent stress

Cijk = cscuku I Oxt
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Note that this choiceisnot symmetricwith respectto an interchangeof either
i or j with k. Launder and Shima [59] use the same approximation for this

term and point out that the choice is made for computational convenience

rather than accuracy. Because of the relative unimportance of diffusive trans-

port, Launder and Shima [59] maintain that the errors are unlikely to have

a significant effect. The modeled dissipation-rate correlation is

[2_ F_fk* ui_'dknknj ujukn_n,:''6ij

(4.74)

where
1

f* - 1 + _ (4.75)
10

is a function that goes to one with low turbulence Reynolds numbers and

goes to zero with high turbulence Reynolds numbers. The function

1
F - (4.76)

1+.? 5e2

ensures that the tensor contracts properly. The long expression, multipled

by f_F, yields the proper limiting behavior as the wall is approached. The

pressure-strain correlation is modeled with four terms:

llij = Ilijl JV [I_1 AV IIi32 -_ rIi_ 2 (4.77)

Here,

rIij l = -cl taij (4.78)

where a;j = (u}u} - 2/36_ik)/k is the anisotropic part of the Reynolds stress
and

llij2 = -c2 (Pio -15ijPkk_ (4.79)3 ,'

models the fully turbulent portion of the pressure strain. The wall functions

IIi_ 1 and IIi_ 2 are only important near solid boundaries, where they redis-
tribute velocity fluctuations from those normal to the wall to those parallel

to the wall. These functions are modeled as

iI _ = _ e (. 3 , , 3-:-z__., '_ijl C1 (_) _u_utmnknmSij -- _ukuirtkn j -- 7jukujrt_:ni) f (4.80)
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and

1-[ij.2=cY_IIkm,21iknm(Sij....... . IIj_2nkni f (4.81)

where the near-wall damping function is f = k3/2/(tx2) with x2 equal to the

distance to the wall. The recommended constants are q = 1.8, c2 = 0.6,

c_' = 0.5, and c_ = 0.3. The dissipation-rate equation used is

St - Oxk c_ _ + ,6k, _ + ftcd _ f_c_2_ + E (4.82)

with

[ox,] ox ] (4.83)
and wall damping functions

[1( 0.725Ry) 1] (4.84)fl = max 2.0 65 '

f2=min 1-0"-44exp -- ,20 (4.85)
ce2

An additional source term for dissipation is included. This source term ac-

counts for the third term on the right side of equation (4.46) and takes the

forII1

u}u'k k2 02fii 02fii (4.86)
E = fuc¢3u ]C e OXjOXl OXkOXl

where the damping function f. is the same as that used in the Launder and

Sharma [42] near-wall k - e model:

3_.4 ] (4.87)

The constants used are c_ = 0.15, cd = 1.275, C_2 = 1.8, and c_3 = 0.25. Some

constants and fimctions have been developed with thought to the physics,

or at least the statistics, of turbulent flows; however, many are ad hoc and

have been optimized by comparisons of mean-flow features of computer cal-

culations with specific experimental results. Therefore, the generality of the

model is somewhat questionable. However, this model performs well for

transitional flows and is discussed in Chapter 6.
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4.4 Large-Eddy Simulation

In large-eddy simulation, the large-scMe quantities are defined by a filtering

operation

f = f + f' (4.88)

where
f

7(x,t) = J f(x*,t)G(x,x*)dx* (4.89)

The integral is extended over the entire spatial domain, and G is a filter

function. Unlike the RANS equations, the overbar here represents the time-

dependent large scales of motion rather than a time average or an ensemble

mean. Primed quantities denote a SGS component of the flow. For the

incompressible isenthalpic case, the filter applied to the Navier-Stokes equa-

tions (equ. (4.1)) and the continuity equation (equ. (4.2))yields the filtered

equations

Ou_ O(_,u o) Op Or_j 1 02u,

0--7 + Oxj - Oxi Oxj + Re ():t?jOXi (4.90)

and
(_i

- 0 (4.91)
Dxi

where a reference length and velocity have been used to nondimensionalize

all quantities and produce the Reynolds number. The SGS stress

Tij _ tliU j -- U i Ilj (4.92)

is not known and must be modeled. Note that although the large-eddy

equations of motion look much like the Reynolds-averaged equations, the

meaning is different. In the Reynolds-averaged equations, the computed

mean quantities are a time average or an ensemble average. In either case,

all of the turbulent motion is buried in the Reynolds stress. However, in

LES, the averages are spatial averages where the modeled parts are those

motions that occur on scales that are too small to be resolved on the grid. In

a properly performed LES, all important temporal variations in the flow are

explicitly calculated, this includes the evolution of the turbulent motion (i.e.,

the large eddies). Traditional thinking assumes that the SGS features simply

transfer energy to higher wave numbers where the energy can be dissipated.
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A commonapproachis to employaneddy-viscositymodel for the smallscales
sothat the modeledSGSstresscanbe written as

9

Tij : --2VtSij "_- 3_ijksgs (4.93)

_..where /_'_,s is tile $GS kinetic energy and _,j is the large-scale strain-rate

tensor. A Smagorinsky [60] model is typically used for the eddy viscosity to

yield

vt = CsA23 (4.94)

where _q = _fiij, _ is a length scale which is the geometric mean of

the grid spacings in the three coordinate directions, and C_ is the square

of the usual Smagorinsky coefficient. Although Cs has traditionally been

taken as a constant., no necessity exists for it to be constant, nor must it

be positive everywhere as was the original Smagorinsky constant. In fact,

recent DNS work done by Piomelli, Cabot, Moin, and Lee [61] suggests that

energy transfer from the subgrid scales to the large scales occurs at nearly as

many grid points as does energy transfer from the large scales to the subgrid

scales. Of course, for any statistically steady turbulent flow, the net energy

transfer must be from the large scales to the subgrid scales; however, the

energy transfer can also be in the opposite direction. This phenomenon is

known as backscatter. Germano, Piomelli, Moin and Cabot [62] used this

insight to develop the "dynamic subgrid scale model" for LES. In this model,

two filtering operators are used:

y(x) =

where G is the grid filter, and

i(x) =

/ f(x')G(x, x')dx' (4.95)

/ f(x')G(x, x')dx' (4.96)

where G is the test filter. All integrations are performed over the entire

computational domain. The test filter corresponds to a coarser mesh than

the grid filter. The combination filter G = GG also can be applied to the

original equations of motion. This application results in an equation similar

to the one that describes the large eddies; however, the overbar terms now

have an additional tilde on top and the SGS stress is now written as

Tij = ulu-'--_- uiuj (4.97)
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The smallestof the resolvedstressesare representedby

which can also be written as

(4.98)

£ij = TO - "?ij (4.99)

\'_'_hen a Smagorinsky model is used for both Tij and ri), the anisotropic parts

of Tij and rij are

Tij - Tkk _ _lij = -2CsA S_qij (4.100)

and

rij -( )rkk _- raij = -2CsA2S&j (4.101)

where _ and A are the filter widths associated with & and (}, respectively.

When equation (4.99) is contracted with 5'ij and the modeled expressions are

used,

is obtained, which can be solved for the Smagorinsky coefficient C,. How-

ever, because the quantity in parentheses can become zero, in practice 6", is

assumed to be a function only of the wall-normal distance and time. Planar

averages are used for the terms in the parentheses. This model has been used

with some success in both fully turbulent and transitional flows.

The model has been extended to compressible flow by Moin, Squires,

Cabot, and Lee [63]. The density must be included in the stress tensors, and

an SGS heat-flux vector

Ok = pukT - (1)-p--_pT (4.103)
P

is modeled in much the same way as the SGS stress.

Another formulation of the model has been proposed by Lilly [64] in which

the tensor £,j is contracted with Mij instead of &a- A positive-definite ex-

pression is ensured for the poorly behaved term in equation (4.102); however,

tests show that despite its positive definiteness, the term remains ill-behaved.

As a result, spatial averages are still employed.
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Chapter 5

Transition-Region Models

5.1 Linear-Combination Transition-Region
Models

In a linear-combination transition-region model, estimates of turbulent flow-

field quantities are linearly combined with estimates of the corresponding

laminar flow-field quantities. The proportion of each of these estimates is

determined by the intermittency of the flow. For example,

ui = (1 - 7)(ui)l_, + 7 (ui)t (5.1)

where the subscripts laln and t indicate the estimate for the laminar and

turbulent flows, respectively.

This kind of transition model can be traced to Emmons [65] and his clas-

sic work on turbulent spots. Dhawan and Narasimha [66] later discovered

that the intermittency distribution in constant-pressure transitional bound-

ary layers could be correlated by the expression

7=l-exp[-0.411(z_zt°) 2] (5.2)

where A is the streamwise distance between the points at which -), = 0.25

and "_ = 0.75, and zt0 is the location where the intermittency first becomes

nonzero. However, the values of Xto and 1\ varied within individual experi-

ments so that the correlation alone could not be used to predict transition.
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Chenand Thyson [67] proposed a different intermittency distribution to ac-

count for pressure gradient and compressibility, effects, although Narasimha

[68] later claimed that this formulation was not well supported by experi-

mental data. Instead, Narasimha [69] and Dey and Narasimha [70] proposed

that subtransitions, or breaks in the usual Dhawan and Narasimha [66] cor-

relation exist in flows with strong pressure gradients. Dey and Narasimha

[18] used tile subtransition concept to correlate flows with pressure gradients

by combining two sets of transition start and end locations.

To develop a useful model, both at0 and ,k must be known. In the linear-

combination model proposed by Dey and Narasimha [18] the starting location

of transition must be determined by some other means (e.g., an e" method)

and empirical correlations nmst be used to determine A. (See also reference

[71] for a concise summary and additional references.)

The point xt0 is the origin of the turbulent boundary layer. The unknown
distance )_ is obtained from

1

where v is tile kinematic viscosity at the edge of the boundary layer, {/'e(Xt2)

is the boundary-layer-edge velocity at xt_, and Reo is tile Reynolds number

based on laminar momentum thickness at. the point, xt2. For mild pressure

gradients, xt2 = Xto. For stronger pressure gradients, .rt2 must be determined

from the intermittency distribution. Because no correlation exists for finding

xt2, xt2 = xto is used to predict the intermittency distribution with this

model. The factor N2 is a nondimensional turbulent-spot formation rate and
is determined from the correlation

(L,2 > O) (5.4)

or

N2 = No(M,q) - 323.0Lta2 (L:: < 0) (5.5)

where No = 0.7 x l0 -a for incompressible flows with a free-stream turbulence

level Tu greater than 0.2%, and Lt2 is a pressure-gradient parameter that is

equal to dU_/dx O_,,.m/V. Both the free-stream velocity gradient d_/dx and

the laminar momentum thickness 01_m are measured at xt2. For compressible

flows, the Mach number correction to No given by Narasimha [68] is used.
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Very low free-streamturbulencelevelsrequire a modified valueof No. The

modification

No = -1.453 x 10-31og(Tu)- 1.61 x 10 -3 (Tu < 0.2%) (5.6)

results when a curve is fitted to the data in Figure 5.10 of Dey and Narasimha

[18].

5.2 Algebraic Transition-Region Models

In algebraic models, the mean flow is calculated from a set of averaged equa-

tions in which the effective viscosity pelf is equal to the sum of the molecular

viscosity/1 and the product of a transition function 3't and a turbulent eddy

viscosity ktt, such that

Peff = # + 7t #t (5.7)

The turbulent eddy viscosity #t may be determined from any type of turbu-

lent eddy-viscosity model. The transition function 7t is not the intermittency

of the flow, but an empirically determined expression that indicates the ap-

propriate fraction of the fully turbulent eddy viscosity. For purposes here,

assume that the appropriate starting location for transition has been deter-

mined by some other means. The model must determine the value of _.

One model, developed at ONERA/CERT, uses a correlating parameter that

depends on the momentum thickness of the flow and the Mach number at

the edge of the boundary layer [72, 73, 24]. Specifically,

o 1 + 0.005_/1_
= O,o (5.s)

1+ 0.02M 

where Oto is the momentum thickness at the point where the model is started.

The expression for "_t is piecewise continuous in the streamwise direction and

is constant across the boundary layer. The algebraic expressions for 3'¢ that

have been used in recent tests of this model [74, 28, 75] are given by Arnal

(private communication).

For 0 < 321 _< 0.25,

")'t =1 --exp {--4.5 [32, (1 + 0.02M{) -0.005M{] 2} (5.9)
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For 0.25< X',< 0.75,

2t = 1b.62_1 - 55.388X_ + 52.369\_ - 16.501)(1 + 1.893 (5.10)

For 0.75 < _, < 3,

7t = 1.25 - 0.25 sin [Tr(0.4-14.\1 - 0.833)] (5.11)

For .:_1 > 3,

7t---- i (5.12)

Note that the transition fuuction exceeds unity for part of the region so

cannot represent the true intermittency of the flow.

Data of low-speed flows with zero and mildly adverse pressure gradients

were used to develop the ONERA/CERT model. This model works quite

well in predicting the length of the transition region for these flows [28, 74].

As with all linear-combination and algebraic transition-region models, no

absolute criterion exists for determining tile location at which the model is

initiated. For comparison with experimental data, Singer, Dinavahi, and Iyer

[28] and Singer, Dinavahi and Zang [74] initiated the transition-region model

at an x-Reynolds number approximately equal to 91% of the x-Reynolds

number that corresponds to a local minimum in a surface quantity (e.g., skin

friction or heat flux). The choice of this z-Reynolds number was based on

posleriori optimization in the case of Singer, Dinavahi, and Zang [74] and

based on a suggestion by Dey and Narasimha [18] for the Singer, Dinavahi,

and Iyer report [28]. Although this guideline for the initiation position gen-

erally leads to reasonable answers, it is not foolproof. In figure 2 the ON-

ERA/CERT model is used with three different starting locations, and the

results are compared to the experimental findings of Kimmel (personal com-

munication) for the flow over a cold-wall cone at a Mach number of 8. The

91% guideline corresponds to Rto= 2.3 x 106. The model's performance here

is not encouraging; however, if the third and fifth experimental data points

were in error (a reasonable assumption), then the curve with Rto = 3.0 x 106

would be appropriate. Note that in this curve, the maximum Stanton num-

ber has been reduced, and the model and experimental results agree better.

Finally, when the model is started further downstream with Rt0 = 3.6 x 106,

the resulting curve is the closest to the experimental data in the transition

zone. In a practical application of the model, the experimental data would
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not be available to optimize the starting location. Singer, Dinavahi, and
Zang [74] showthat art e N approach with 9 < N < 10 provides appropriate

starting locations for supersonic flight-test data, although the margin of error

is large {perhaps fl'om 15 to 20% discrepancies in the optimal choice of/_z0).

A serious problem with the ONERA/CERT model occurs with strong

favorable pressure gradients, where the momentum thickness decreases with

streamwise distance. In these cases, the model can fail to transition properly.

For example, consider figure 3, which is plotted with data from reference [28]

and digitized data from reference [46]. This flow involved a strong favorable

pressure gradient with a free-stream turbulence level of about 2%. (See Blair

and Werle [76] for experimental details.) The chain-dashed line illustrates

the Stanton number distribution for this flow when the two-layer model of

Fujisawa, Rodi, and SchSnung [46] is used. This model will be discussed later.

The dashed line (concealed by the solid line in the laminar region) represents

the results from the linear-combination model of Dey and Narasimha. (See

previous section.) The solid line is the Stanton number computed with the

ONERA/CERT algebraic model. The laminar momentum thickness in this

flow began to decrease slightly upstream of the Stanton number minimum.

Although the transition model was initiated, the decreasing laminar mo-

mentum thickness prevented any turbulent eddy viscosity from being added;

hence, the calculated flow remained laminar throughout the test section.

5.3 Differential Transition-Region Models

Turbulence models have been used to model the transition region for several

decades. Donaldson [77] solved a form of RST equations (he solved for three

normal stresses and rxy) for transitional flows. He computed the onset and

evolution of transitional flow and performed many computations that demon-

strated the effects of various model constants, starting locations, and initial

profiles; however, he did not present comparisons with specific experiments.

Launder and Spalding [40] reported the results of some k - e calculations

by Priddin [78] in which the transitional flow over a turbine blade at vari-

ous levels of free-stream turbulence was accurately calculated. Launder and

Spalding [40] suggested that "the low Reynolds number form of the /c - e
model has its own built-in 'transition criterion.' "

A somewhat different view has evolved since then. The transport equa-
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tions associatedwith turbulencemodelsallowfor the transport of free-stream
turbulenceinto a laminar boundarylayer. When the levelof free-stream tur-

bulence is sufficiently high, the rate of diffusion of this free-stream turbulence

into the boundary, layer can exceed its dissipation rate. At some point, the

turbulence model production mechanisms respond to tile free-stream tur-

bulence that has diffused into the boundary layer in the same way these

mechanisms would respond to genuine turbulence; a pseudotransition pro-

cess occurs, and the end result is a turbulent boundary layer.

The pseudotransition process is sensitive to a number of details in the

calculations, particularly the starting profiles of various quantities (k and

e, where appropriate, or the Reynolds stresses for RST models) and the

streamwise position where the models are started. Detailed studies of the

physical processes of transition amid high levels of h'ee-stream turbulence

have not yet established the relationship of the pseudotransition in the models

to the true physical processes. The suggestion that the models simulate the

physical transition process (even in the case of high free-stream turbulence)

is premature, if not completely incorrect.. The fact that reasonable results

are obtained in some cases h'om models that are not explicitly designed for

transitional flow is largely fortuitous.

Schmidt and Patankar [79] performed extensive tests with the k - e mod-

els of Jones and Launder [41] and Lain and Bremhorst [43] to determine the

suitability of the models for simulating boundary-layer transition. Schmidt

and Patankar [79] contend that low tleynolds number k - e models can re-

produce some qualitative aspects of boundary-layer transition because of the

weak correspondence between a developing laminar boundary layer and the

viscous sublayer, the transitional flow region and the buffer layer, and the

fully turbulent boundary layer and the "law of the wall" region. After the

models were tested, the authors concluded that

l° The predicted starting location of transition is moderately sensitive to

initial profiles for k and e and the location at which the calculations

begin. This sensitivity will be discussed in more detail later.

Basic qualitative aspects of transition are correct (i.e., the higher the

turbulence level, the earlier transition begins); however, when the calcu-

lations start early so that sensitivity to the starting location and profiles

decreases, transition is consistently predicted unrealistically early.
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3. The transition lengths are significantly shorter than those found in
experiments.

Theseconclusionsareconsistentwith the findingsof other modelers[80,45].
In addition to tile problemsidentified thus far, Rodi [30] indicates that the
models only undergo transition with high (> 1%) free-streamturbulence
levels. The low fl'ee-streamturbulencecasemust bedealt with in a different
way.

This section coversmodels in which the transport equationshave been
altered to specificallyaccountfor the transition process.Most of thesemod-
ifications are empirical; hence,they can be applied only to the regimefor
which the empirical correlationshavebeenformulated.

One set of experimentsperformed by Abu-Ghannam and Shaw [81] in
incompressibleflow with pressuregradients and free-streamturbulence is
commonlyusedto calibrate the models. Abu-Ghannamand Shaw[81]corre-
lated the beginningand ending transition Reynoldsnumbersfor many flows
and presentedthesecorrelations:

[ ( ")]Reo_ = 163 + exp F(/_0) 1 6.91

for the start of transition and

= 540 + 183.5 (RL × 10 -5 -- 1.5)(1 -- 1.4 -- he) (5.14)Reo_

for the end of transition. In these expressions, he = (02/.)dtg/da:, and RL

is a length Reynolds number given by

RL = 16.8(R x )°8 (5.15)

where Rex, is tile x-Reynolds number of the start of transition. The function

F(he) is given by

and

F(,_e) = 6.91 + 12.75he + 63.64h 2 (he < o) (5.16)
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F(._e) = 6.91 + 2.48A0 - 12.27h_ (he > 0) (5.17)

The beginning and ending Reynolds numbers from the Abu-Ghannam and

Shaw [81] experiments were determined by measurements with a single, fixed

probe and varying free-stream conditions.



5.3.1 The Two-Layer k- e Model

Chapter 4 briefly described the two-layer approach of Rodi [31] in which a

standard k - e model was used for the bulk of the flow, and a version of

the Norris and Reynolds [29] one-equation model was used for the near-wall

region. The parameter A +, which is used in tile damping of the turbulence

transport length scale, is used to control the transition process. Thus,

tlere A + is the fully turbulent value and Reo_ is the momentum-thickness

Reynolds number at the start of transition (as determined by the correlation

of Abu-Ghannam and Shaw [81]). Tile transitional value of A + only is used

when Re0_ < Re0 < 2Re0_. For the limited number of cases checked, the

agreement is satisfactory.

Fujisawa, Rodi, and SchSnung [46] modify the form of .4 + so that the em-

pirical relation includes both the beginning and ending transition Reynolds
numbers.

where Reds and Re0_ are the Reynolds numbers associated with the start

and end of transition (as determined by the Abu-Ghannam and Shaw [81]

correlations). Eujisawa, Rodi, and SchSnung [46] also use a different matching

condition. The one- and two-equation models match where

y + = 6.1A + (5.20)

Tile computed results compare reasonably well with the results from sev-

eral experiments, even with those from the strong acceleration case of Blair

and Werle. [76] (See figure 3.) This particular result is surprising because
A + is based on momentum thickness and the laminar momentum thickness

decreases near the minimum Stanton number in the experiments. A careful

review of this result reveals that, for this case, the good agreement is acciden-

tal; the Abu-Ghannam and Shaw correlation predicts the onset of transition

upstream of the minimum Stanton number (Re0 _ 300 from correlation;
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Reo _ 365 at minimum Stanton number). This fortuitous occurrence ini-

tiates the turbulence model sufficiently far upstream where the momentum

thickness is still increasing. Enough turbulence is generated that tile momen-

tum thickness never decreases. In some other case, the gods of transition and

turbulence might not smile so brightly; this model has as much potential for

failure as the ONERA/CERT model.

Rodi, Liu, and Schgnung [48], and more recently Cho, Liu, Rodi, and

SchSnung [47], have adapted versions of the two-layer model for application

to wake-induced unsteady flow by using tile model in a Lagrangean way.

Unsteady boundary conditions that correspond to the wake-perturbed flow

field are used at the upstream end of tile domain. Fluid elements near the

boundary-layer edge are tracked and the local growth of Ree is monitored and

compared with the theoretical Res for the pressure-gradient and free-stream

turbulence parameters in that location at that time. When/_eo first exceeds

the local Res, that value of/-_e, is frozen and used in the determination of

A + for all downstream locations of that fluid element. With this model,

the predicted flow quantities agree well with experiment over most of the

surface. However, discrepancies occur with the turbulence intensities near

the leading edge of the turbine blades because the boundary layer is quite

thin in this area. This discrepancy at the leading edge does not result in

problems further downstream.

5.3.2 Schmidt and Patankar k- e Model

Based on the knowledge gained from their comparative study, Schmidt and

Patankar [82] discuss a k-e model that gives reasonably accurate indications

of the starting point and extent of transition in a number of flows. Their

modifications fit. into the general scheme of low Reynolds number k- e models

and satisfy two additional requirements:

1. A well-defined region exists where starting profiles can be specified with

minimal sensitivity.

2. The transition predictions determined starting and ending locations

that agree well with the Abu-Ghannam and Shaw [81] correlations.

Schmidt and Patankar's [82] specific modifications are tailored to the Lam

and Bremhorst [43] low Reynolds number form of the k" - e model. Instead of
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modelingthe turbulent kinetic-energyproduction term Pk = p'u_u} (Oui/Oxj)

with the standard eddy-viscosity approximation, Schlnidt and Patankar [82]

also constrain how fast the production term can grow and, consequently,

the rate at which transition proceeds. Without understanding the detailed

processes, they are able to meet their second objective with an empirical

formulation where
dPkn_._

-- B1Pk q- B2 (,5.21)
dt

in which t5'1 and B2 are empirical parameters. They require that Pk = 0

where the momentum-thickness Reynolds number is below a critical value. Of

course, the applicability of the model is limited to those cases for which their

value of the critical momentum thickness is appropriate, although even with

no production of k inside the boundary layer, kinetic energy can be convect.ed

into the boundary layer from the free stream. Schmidt and Patankar also

modify the eddy-viscosity damping function f, so that it never exceeds unity

(it never should). This change allows the/,'- e model to simulate transition

with free-stream turbulence levels less than 1%. The coefficients B1 and B2

are determined by numerical optimization over a wide range of turbulence
intensities from 0.5% to 10%.

Schmidt and Patankar's [82] new model is insensitive to the starting loca-

tion when the initial x-Reynolds number is less than 1000. For these initial

starting locations, the solution is also insensitive to the starting profiles.

The calculation results are compared with the results of 16 separate experi-

ments that were performed by three different experimenters for a variety of

free-stream turbulence levels and pressure gradients. For the high free-stream

turbulence cases of Blair and Werle [76], Schmidt and Patankar [82] predicted

transition somewhat earlier than actually occurred in the experiments. The

model agrees much better with the data of Rued [83]. Satisfactory agreement

is also obtained with the turbine-blade experiments of Daniels [84]. Because

this model, like the ttodi models [31, 46, 48, 47], is triggered by an Fleo con-

dition, it can also fail if the laminar momentum thickness decreases before

the turbulence model takes effect.

5.3.3 Wilcox k - co Model

Wilcox [85] modified his k- 02 model to account for low Reynolds number

and transitional-flow effects. As with Schmidt and Patankar [79, 82], the
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modificationsdelaythe onset of transition and extend the length of tile tran-

sition region. In Wilcox's model, tile constants in the standard version of the

k - w model are functions of the turbulent Reynolds number RT = k/(cou).

In the high Reynolds number version, a* = 1; the newer version uses

_ Rk (5.22)
i + n_-a:

R_

with c_; =/3/3 and Rk = 6. As the turbulent Reynolds number gets large,

a* goes to its high Reynolds number value. Similarly, a, which was equal

to 5/9, now goes asymptotically to that value; however, for lower turbulent

Reynolds numbers, oe is

5 1 C_o+ _
= .... (5.23)

9 a* 1+ nr
R_

where R_, = 2.7. The constant _ retains its value of 3/40 while

t3"= 9__9_. _s + _,ne} (5.24)

100 1 + \R_/

with RO = 8. The three constants RO, R_,, and Rk control the rate at

which the closure coefficients approach their high Reynolds number values.

Their values are the result of computer optimization and comparison with

turbulent sublayer statistics. The model has been tested for transitional

flow of an incompressible fluid over a flat plate. The starting locations of

transition as a function of free-stream turbulence intensity agree reasonably

well with the data of Dryden [86], although some sensitivity to the free-

stream value of co exists. The extent of the transition region as a function

of the starting location of transition gives a satisfactory match with Dhawan

and Narasimha's data [66]. The free-stream value of co apparently does not

affect the transition-region length.

5.3.4 LES Models for Transition

Piomelli and Zang [87] and Zang and Piomelli [88] tested several SGS mod-

els for LES of transitional flow. They found that the standard Smagorin-

sky type of model was overly dissipative, but that transitional phenomena
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could be adequatelycaptured using an intermittency function which varied
as(Ht - H)/(H_ - Ht). Here, H is the shape factor and the subscripts l and

t refer the laminar and fully turbulent values, respectively. Another SGS

model that is based on renormalization group theory was also used. The

SGS stresses were essentially zero in the linear and early nonlinear stages of

transition. The model captured most of the physical features of transition,

but the quantitative results were very grid dependent. The formulation of

the dynamic Smagorinsky SGS model by Germano et al. [62], which was

described earlier was also used. This model, which allows for backscatter,

gave the best predictions of mean-flow quantities of the transitional flow.

Quite recently, El-Ha@, Zang, and Piomelli [89] performed LES calcula-

tions of a Mach 4.5 transitional boundary layer along a hollow cylinder using

both the Germano et al. [62] and Lilly [64] formulations of the dynamic

Smagorinsky SGS model. This work is ongoing, but preliminary results in-

dicate that both formulations work well. Comparisons with the results of

the direct numerical simulations performed by Pruett and Zang [90] on the

same geometry indicate that the version of the dynamic Smagorinsky model

suggested by Lilly [64] is somewhat more accurate than the original version

by Germano et al. [62].

5.3.5 Questions Regarding Model Initiation

As noted earlier, linear-combination and algebraic models are sensitive to tile

choice of transition starting location. A similar problem arises with differ-

ential transition-region models, although, in this case, the problem involves

the specification of initial turbulence profiles. In the past, variations in the

starting locations and initial profiles for the turbulent statistics were not well

documented. The same model could produce vastly different results for the

same basic flow conditions; the differences were dependent upon the details of

the initial conditions. Rodi and Scheuerer [45, 80] reduced the confusion by

introducing initial profile functions that satisfied some basic constraints on k

and e. According to Rodi and Scheuerer [80], the profile for k vanishes at the

wall, increases quadratically with distance fi'om the wall, and asymptotes to

the free-stream value. Their expression that meets this criteria is

= (5.25)
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Fewerconstraints must be imposedon the e profile. In the free stream, e

must go to its free-stream value; Rodi and Scheuerer [45, 80] argue that the

length scale ka/2/e inside the boundary layer should not exceed the length

scale in the free stream. They assume that the initial dissipation rate is

proportional to the production rate of k so that

(OU] (<. > eo) (5.:_6)

where al is a function of the free-stream turbulence level. Rodi and Scheuerer's

[45, 80] calculations start with Re0 < 100, where they claim that the flow is

still stable and laminar. Schmidt and Patankar [79, 82] use similar profiles,

although they take al to be constant (a_ = 0.1). Schmidt and Patankar

[79, 82] also begin their calculations earlier; their results were insensitive

to the initial profiles of k and e when Ree _< 25. Abid [91] reports that

predictions are independent of starting profiles for most k - e models when

Re,: < 1000. Abid [91] indicated that the Launder and Sharma model [42]

had the more stringent starting requirement (Re,: < 100) in order to be

independent of initial profiles. For flow over a flat plate, these Re,: values

correspond to Re0 = 21 and Reo = 6.6, respectively. In all studies that report

different sensitivities, the results are more sensitive to the initial e profiles

than to the initial k profiles. Starting profiles for RST models have not been

extensively explored; however, Savill [92] indicated that his results do not

depend strongly on the normal stress distribution, but are sensitive to the

assumed e profile. The effects of starting conditions have not been explored

with LES models. However, the sensitivity of the transition process to the

initial disturbance field has been documented with DNS [93, 94]; hence this

sensitivity will likely to be a problem for LES.

5.4 Unconventional Approaches

In this section, I will outline some novel ideas that have been proposed,

but are not currently in vogue. Some of these ideas, for good reasons, will

probably never be useful; others, with some work, could hold some promise
in the future.

The renormalization group (RNG) theory of Yakhot and Orszag [95] sug-

gested that many different levels of turbulence models, and even transition
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models,could be obtained in a straightforward manner. Unfortunately, the
algebraic RNG model for transition simulation that wasstudied by Lund
[96] produced discontinuitiesin the turbulent eddy viscosity. Although the
qualitative behavior of the model wascorrect, oscillations in the solutions
cast doubts about the reliability of tile model for flowsmore complexthan
flat-plate boundary layers. The RNG-basedSGSmodel for LES performed
somewhatbetter [97], largely becausethe model was inactive for much of
the calculation. In more recent calculations,the results are very grid sen-
sitive [88]. This bleak picture for RNG-basedmodels may changein the
future. Smith and Reynolds [98] found an algebraic error in the derivation of

the skewness and identified several problems in the derivation of the energy-

dissipation-rate equation. Future models with alternative derivations may

prove more useful than their predecessors.

Young, Warren, Harris, and Hassan [99] modeled transition for the in-

compressible flow over a flat plate with low levels of free-stream turbulence.

They explicitly included the effects of Tollmien-Schlichting (TS) waves by

modifying the eddy-viscosity length scale. The new length scale incorporates

TS wavelength information for a fraction (1 - 7) of the time. Unfortunately,

in the true physical scenario, no true TS waves remain in the flow when

7 # 0, although relics of their length scale may still exist. Young et al. also

adjusted the equations to account for the large scales in the flow that were

neither laminar nor turbulent. Both of these corrections had little effect on

the shear stress, but had a large effect on the turbulent intensities.

Vancoillie and Dick [100] developed an incomplete model in which the ef-

fects of the intermittency of turbulent spots were incorporated directly into

the k and _ equations. Conditional averaging was used so that the laminar

and turbulent portions of the flow could be time-averaged (or ensemble-

averaged) separately; the number of continuity and momentum equations to

be solved was doubled, at least in the transitional-flow regime. Gradients of

the intermittency appeared in the equations. Dhawan and Narasimha's [66]

intermittency distribution was used, and the starting and ending locations of

transition were assumed known. To date, this method has limited practical

value. Vancoillie and Dick [100] computed boundary layers that corresponded

to the experiments of Schubauer and Klebanoff [101], Juillen and Arnal [102],

and Blair and Werle [76]. The results showed good agreement with experi-

ment, particularly when the transition region was long when compared with

the length of the boundary layer. Where the transition region was short, as
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in the caseof strong adversepressuregradients,Vancoillieand Dick's [100]
method did not performwell as it did for zero-pressuregradients.
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Chapter 6

Evaluation of Transition

Models

An appropriate transition model should be easy to use, computationally

inexpensive, and likely to provide accurate results for all conceivable

transitional flow situations. The degree of emphasis placed each of the words

in bold-faced type is largely an individual choice. After these choices have

been made, adequate information about the possible models must be ob-

tained. The remainder of this chapter explores sources of information for

selecting a model when the priorities have been established.

6.1 A Systematic Method

Singer and Dinavahi [75] proposed a strategy for testing transitional flow

models. Because they were model users rather than developers, Singer and

Dinavahi [75} avoided a priori biases regarding whether the models would

run successfully. Rather, they identified the test problems and emphasized

the procedure for handling diverse flow types with multiple examples. Specif-

ically, they suggested

1. identify the major flow types for which the model will be used,

2. find appropriate experiments that illustrate the important physics, and

3. compare the model predictions with the experimental data.
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For example,Singerand Dinavahi [75]consideredthe requirementsfor a
transition-region model to calculateflowsoverhigh-speedaerodynamicvehi-
cles.An easy and inexpensive algebraict nrbulencemodel wasused,which
limited them to linear-combinationand algebraictransition-region models.
Singerand Dinavahi [75] selected a form of the Dey and Narasimha model [18]

(linear-combination) and a model developed at ONERA/CERT [72, 73, 24]

(algebraic).

They assumed that some other method could be used to determine the

start of transition; the model needed to predict only tile flow in the transition

region. Seven types of transitional flows were identified that could conceiv-

ably be important for a high-speed aerodynamic vehicle. These test flows

included two-dimensional incompressible constant-pressure boundary layers;

boundary layers with pressure gradients; supersonic flows; flows with free-

stream turbulence; flows with rough surfaces; flows with streamline curva-

ture; and three-dimensional boundary layers. This list might seem extensive;

however, it is by no means complete. A gas-turbine application would prob-

ably include transition in a boundary' layer with mass injection and possibly

transition in separation bubbles. A combustor application would require

chemically reacting flows and free-shear layers. The list could continue; how-

ever, Singer and Dinavahi [75] emphasize the responsibility of the user to

identify the relevant physical phenomena that will influence the transition

process for the specific application.

In the next step, experiments that illustrated transition in the selected

situations were chosen. Numerous criteria for the choice of experimental data

were discussed. For example, some quantity that can be ,'elated to both the

beginning and the end of transition must be measured. Ideally, measurements

throughout the transition region were desired; however, the locations of the

beginning and end of transition (determined by some well-defined criteria)

were acceptable. Singer and Dinavahi [75] stressed simple geometries for two

reasons: to minimize extraneous effects that might influence the transition

process and to avoid the numerical difficulties associated with constructing

complicated grids and solving the relevant equations on those grids. Finally,

Singer and Dinavahi [75] noted that transition experiments are often sensitive

to flow details that are not explicitly measured, such as very small scale

surface roughness near the leading edge and the free-stream turbulence length

scale and spectrum. The uncertainty in these quantities is typically not

reflected in the experimental uncertainty of the measurements. Singer and
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Dinavahi [75] also urgedthe useof multiple experimentsfor tile same flow
type, preferablyperformedin different facilities. The larger the data set, the
lesslikely that overly generalconclusionswill be drawn. Unfortunately, they
did not alwaysfollow their own advice;someflow typeswerenot represented
by a suitablediversity of experiments.This problem is beingaddressedwith
an extensionto tile database.

The modelswereusedto predict the mean-flowin the test cases.When
tile internfittency was t)rovided by the experimenters,an extrapolation of
V/- log(1 - *r) to zeroprovidedthe point at whichthe modelswereinitiated.
When intermittency wasnot provided (the usual case), tile models were
initiated at a streamwiseposition that correspondedto 91%of the distanceto
the localminimum of somemean-flowproperty (e.g.,skin-friction coefficient,
Stanton number,surfacepitot-tube pressure,etc.). The useof strict criteria
for the starting positionsof the modelseliminated thesubjectiveadjustments
that many modelershaveusedto maketheir results correspondbetter. (For
example,seereference[aa],where the surface roughness was varied to better

fit the data; reference {35], where free-stream turbulence levels were varied;

and reference [10a], where the starting location of transition was optimized on

a case-by-case basis. Many other cases exist in which a similar optimization is

suspected; the authors of the above references were careful enough to report

what was done.)

A total of 24 test cases were run; the results were reported in reference

[28] and were made available electronically to other modelers.

The extensive testing illustrated some important points.

. The ONERA/CERT model can fail to predict any transition for a

strong favorable-pressure-gradient case. (See fig. 3.) This failure to pre-
dict transition has been traced to the fact that the momentum thickness

ill the laminar boundary layer begins to decrease just before the model

is initiated. Any model of the transition region that depends on an

essentially monotonic increase of the momentum thickness through the

transition zone (e.g., the transitional-flow correction to the two-layer

model developed at Karlsruhe) is subject to this problem.

i?,. Linear-combination models cannot be used on flows for which the lam-

inar flow would have separated, even if the transitional flow remains

attached, because the laminar flow through the transition region is re-
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o

quired to construct the appropriate linear combination.

The initiation of a turbulent boundary layer with zero boundary-layer

thickness (as is required by linear-combination models) along a three-

dimensional front that is not perpendicular to the streamlines is diffi-

cult. Without a clean method for performing this computation, linear-

combination models in strongly three-dimensional flows are not practi-

cal.

4. Not surprisingly, the transitional-flow results depend on the turbulence

model used.

5. Appropriate methods for initiating the transitional-flow model should

be developed.

. High levels of free-stream turbulence can influence the laminar flow

before a transition-region model is initiated. This influence may not be

a problem for models that solve a transport equation for the turbulence;

however, algebraic and linear-combination models do not show any

effect of the free-stream turbulence before transition begins.

After the testing was completed, Singer and Dinavahi [75] felt that a

single transition-region model was not appropriate for all flows considered

and suggested a "conglomerate model" that employs several submodels (or

different coefficients for the same basic model). Each of these submodels

would be optimized for a particular category of flows and selected by an

experienced user (or perhaps an expert-system program).

6.2 The T3 Test-Case Project

The Europeon Research Community on Flow Turbulence and Combustion

(ERCOFTAC) Special Interest Group (SIG) on transition and retransition

has established a program for the assessment of turbulence models for en-

gineering applications. The project is coordinated by Dr. A. M. Savill, a

Rolls-Royce Senior Research Associate in the Engineering Department of

the University of Cambridge in England. Savill outlines the program and

summarizes the early results in reference [92]. More recent results have been

reported in references [104] and [57].
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Test casesT3A-, T3A, T3B, and T3C correspond to experiments per-

formed at the Rolls Royce Applied Science Laboratory by Roach and Brier-

ley [104, 105] to investigate the effects of isotropic free-stream turbulence on

transition in zero-pressure-gradient boundary layers (cases T3A-, T3A, T3B)

and in a favorable-to-adverse pressure-gradient boundary layer (case T3C).

As additional experiments are performed, the number of test cases will be

increased. (Unpublished data by' Niew and Gaster of Cambridge University

are being used to specify a case of transition following laminar separation

[104].) Stow, Birch, Price, Roach, Brierley, and Cholerton of Rolls Royce

(See reference [104].) prepare the specifications for the test cases. Typ-

ical test case specifications include velocity, turbulent kinetic energy, and

dissipation-length-scale distributions in the free stream. The more recent

experiments also include boundary-layer profiles of streamwise mean and

perturbation velocities at a specified streamwise location on the flat plate.

Suggested dissipation profiles are also provided. Participants in the program

are requested to provide plots of the skin-friction coefficient Cf and the shape
factor H against log Rex and x.

The first report [92] includes 16 different sets of results, which were pro-

vided by nine research groups. No standard for numerical accuracy was

imposed; each research group provided results that they felt were adequately

resolved. In spite of the inclusion of a suggested Reynolds stress profile in

the original specification, some investigators used a different profile instead

of or in addition to the specified one. The conclusions indicate that the initial

Reynolds stress profiles are not particularly important to the results; the re-

sults are more sensitive to the initial dissipation-rate profiles. Computation

times were not always reported, but the available data suggest that these

times varied from a few minutes on a VAX or IBM mainframe (typical of

parabolic schemes) to hundreds of hours on a CRAY X-MP for a DNS. Only

cases T3A and T3B were included in the initial report. Some highlights from
the results are discussed below.

A DNS performed by Yang and _v%ke [106] closely matched the experi-

mental data for skin friction and shape factor even though the grid resolution

(255 × a2 × 16) was extremely coarse for a turbulence calculation. The LES

performed by Mortenssen, Eriksson, and Albraten [107] using a standard

Smagorinsky model without special transitional-flow treatment did not un-

dergo transition. However, the recent dynamic-scale Smagorinsky models

described in Section 5.3.4 were not tested for this flow; these models may

67



predict mean-flowpropertiesas well astile DNS. Savill [108]used an RST
modelwith variouslow Reynoldsnumberclosures. Only the Launder-Sharma

low Reynolds number closure (see Section 4.3) underwent transition in both

test cases; in both cases, this closure performed well. For two-equation mod-

els, those that used the Launder-Sharma low Reynolds number closure per-

formed better than other models. Although this closure is asymptotically

correct for e and u'u' in turbulent flows, the fact that it depends primarily

on RT = k2/(eu) is probably more important because RT does not depend

directly on the the distance from the wall (unlike /_y or y+). Other mod-

els that perform well in fully turbulent flow might do better for transitional

flow if they were reformulated with RT rather than R v dependencies. The

k - e models were surprisingly insensitive to the initial k profile, but were

very sensitive to the initial e distributions. In most two-equation models,

the skin-friction peak was not correctly predicted and the transition length

was too short. Many of these observations were concurrently observed by

Schmidt and Patankar [79]. Unfortunately, the Schmidt and Patankar model

[82] was not included in the assessment program.

Subsequent reports of this program have included additional results from

original contributors and new participants. The number of flow cases has also

increased. The new Tac case with a favorable-to-adverse pressure gradient

is certainly important to the gas-turbine industry, although from a model-

ing viewpoint an examination of separate favorable- and adverse-pressure-

gradient cases may have been more enlightening.

The lack of strict deadlines in the program has allowed for continuous

input from the participants. Unfortunately, this lack of deadlines also means

that a complete, well-documented synthesis of the data is difficult to obtain.

Similarly, case specifications can only be obtained from Dr. Savill or from the

other participants. As some of these difficulties are overcome, this program

promises to become a great source of information on the performance of

various transition models, particularly in those flows that are relevant to the

gas-turbine industry.
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6.3 All Data Are NOT Equal-Some Notes

on the Use of Experimental Data

Transitional-flow data have often presented tile research cominunity with

paradoxes and apparent inconsistencies. Most of the time, the problem is

not a glaring mistake, but a surprisingly strong influence by some flow quan-

tity (usually not measured) on the flow. In this section, I discuss a personal

experience with seemingly disparate data taken from a much acclaimed ex-

periment.

The ONERA/CERT algebraic transition-region model was to be evalu-

ated for supersonic flow over a cone in very low-disturbance environments.

I selected eight cases from the flight experiments of Fisher and Dougherty

[109]; four of these cases had edge Mach numbers from 1.44 to 1.47. For these

four cases, I was interested in testing for strong unit Reynolds number effects

in the flight experiments. Pate [110] illustrated strong unit Reynolds number

effects in noisy wind tunnels and even in some ballistic-range data. Would

these effects also be noticeable in flight tests? By luck, I found two cases from

this group that had nearly identical unit Reynolds numbers. The predicted

results for the two cases were essentially the same. The experimental results

showed something different.

Detailed data from Flight 3a9 at time 13:13 and Flight aa5 at 13:5a as

reported in reference [109] are shown in table 6.1. The notation in the table

is the same as that used in reference [109]; the nominal mean flow is charac-

terized by the Mach number at the edge of the boundary layer M_, the unit

Reynolds number Rq, the total temperature TT, and the dynamic pressure

q_. For all of these quantities, the differences between the two cases are

less than 5%. The free-stream turbulence is described by the ratio of the

root-mean-square total-pressure fluctuations V/_ to the dynamic pressure.

Here, the difference between the two cases is about 7.5%. The pitch a and

yaw ,_ angles (in degrees) differ in the two cases. The two cases also differ

in how closely the wall temperature approximated the adiabatic wall con-

dition T_.,/T=_ = 1.0. The Reynolds number at the start of transition Rein

and the Reynolds number at the end of transition ReTo correspond to the

axial distance along the cone at which minimum and maximum surface pitot

pressures were measured. The transition Reynolds numbers reported were

already corrected (through empirical correlations) to account for the small
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Flight Me Re_ TT T_/T_ q_ V/_:_/q_ cr /3

339 1.44 11.04 317.3 1.023 34.14 2.30 × 10 -4 -0.07 -0.0S

335 1.46 10.94 324.3 1.041 35.58 2.49 × 10 -4 -0.10 -0.07

Table 6.1: Two flight cases from Fisher and Dougherty [109]. The unit

Reynolds number Re1 is in units of l/m, the total temperature TT is in

degrees Kelvin, the dynamic pressure q_ is in units of KN/m _, and the

pitch a and yaw/3 angles are in degrees. All of the Reynolds numbers Rex,

Ret0, and ReTo have been multiplied by 10 -6.

Ret0

7.20

7.57

ReTo

8.06

9.23

deviations from adiabatic wall temperatures and nonzero incidence angles.

Even without the corrections, the small differences measured in the two flight

environments in no way suggest the difference of nearly a factor of 2 in the

length of the transition region (ReTo -- Reto), particularly when both cases

start transition at nearly the same Reynolds number. Which data point

should be used to calibrate a model? Which should be used to report re-

sults? Singer, Dinavahi, and Zang [74] found that the ONERA/CERT model

performed well for the second case and poorly for the first case. If the ex-

periment did not measure (or did not report) one of these data points, how

much faith can be put in the other point?

The Fisher and Dougherty flight experiments are considered high-quality

work and remain an excellent source of data. With a traditional measure

of transition-region length ReTo/Re,o, the ratios for the two cases are 1.12

and 1.22. The factor-of-2 difference in the length of the transition region

does not appear so dramatic here, in particular because ratios from 1.1 to

more than 2.0 have been found on the same cone in a variety of wind tunnels

with the use of the same instrumentation and approximately the same Mach

number (See figure 26 in reference [111].). The point is that a single case is

not a sufficient basis for either model calibration or evaluation. Many more

test cases are needed to assess the consistency of data and to determine the

ability of the model to predict trends.
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Chapter 7

Summary and Author's Views

This report began with experts' opinions of transitional-flow modeling. To

understand modeling problems, various flow features that influence the tran-

sition process were discussed such as pressure gradients, compressibility, free-

stream turbulence, surface roughness, streamline curvature, and mean-flow

three-dimensionality. Various types of transition-region models were exam-

ined in table 3.1; rows of table 3.1 showed the level of modeling used for the

turbulent flow and columns showed the level of modeling for the transition

region. Different approaches to transition-region modeling require the use of

different turbulence models. In later chapters some of the different models

were explored in detail. The eddy-viscosity models involved the calculation

of a turbulent eddy viscosity that is added to the molecular viscosity to cal-

culate the mean flow. Determination of the eddy viscosity requires algebraic

relationships or the solution of additional transport equations for various tur-

bulence quantities (e.g., turbulent kinetic energy and turbulent length scale);

these solutions are then combined to form an eddy viscosity. The RST models

require the solution of separate equations for each of the turbulent stresses.

In the LES approach, the SGS stresses must be modeled and the large-scale

turbulent motions are computed. Modifications to these models to account

for transitional flow often require additional empirical input. Finally, model

assessment and the use of experimental data were discussed in the previ-

ous chapter. Throughout the text, I have tried to give a balanced view of

the issues. The reader should now have sufficient knowledge to make his or

her own judgments, so I will take this opportunity to offer my own opinions

regarding transition-region models.
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